Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35194607

RESUMO

The omicron variant of SARS-CoV-2 infected very large numbers of SARS-CoV-2 vaccinated and convalescent individuals 1-3 . The penetrance of this variant in the antigen experienced human population can be explained in part by the relatively low levels of plasma neutralizing activity against Omicron in people who were infected or vaccinated with the original Wuhan-Hu-1 strain 4-7 . The 3 rd mRNA vaccine dose produces an initial increase in circulating anti-Omicron neutralizing antibodies, but titers remain 10-20-fold lower than against Wuhan-Hu-1 and are, in many cases, insufficient to prevent infection 7 . Despite the reduced protection from infection, individuals that received 3 doses of an mRNA vaccine were highly protected from the more serious consequences of infection 8 . Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving 3 mRNA vaccine doses 9,10 . We find that the 3 rd dose is accompanied by an increase in, and evolution of, anti-receptor binding domain specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the 2 nd vaccine dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared to antibodies obtained after the 2 nd vaccine dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells that differed from the persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analyzed neutralizing antibodies in the memory compartment obtained from individuals receiving a 3 rd mRNA vaccine dose neutralized Omicron. Thus, individuals receiving 3 doses of an mRNA vaccine encoding Wuhan-Hu-1, have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help explain why a 3 rd dose of an mRNA vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease.

2.
bioRxiv ; 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132412

RESUMO

SARS-CoV-2 infection or vaccination produces neutralizing antibody responses that contribute to better clinical outcomes. The receptor binding domain (RBD) and the N-terminal domain (NTD) of the spike trimer (S) constitute the two major neutralizing targets for the antibody system. Neutralizing antibodies targeting the RBD bind to several different sites on this domain. In contrast, most neutralizing antibodies to NTD characterized to date bind to a single supersite, however these antibodies were obtained by methods that were not NTD specific. Here we use NTD specific probes to focus on anti-NTD memory B cells in a cohort of pre-omicron infected individuals some of which were also vaccinated. Of 275 NTD binding antibodies tested 103 neutralized at least one of three tested strains: Wuhan-Hu-1, Gamma, or PMS20, a synthetic variant which is extensively mutated in the NTD supersite. Among the 43 neutralizing antibodies that were further characterized, we found 6 complementation groups based on competition binding experiments. 58% targeted epitopes outside the NTD supersite, and 58% neutralized either Gamma or Omicron, but only 14% were broad neutralizers. Three of the broad neutralizers were characterized structurally. C1520 and C1791 recognize epitopes on opposite faces of the NTD with a distinct binding pose relative to previously described antibodies allowing for greater potency and cross-reactivity with 7 different variants including Beta, Delta, Gamma and Omicron. Antibody C1717 represents a previously uncharacterized class of NTD-directed antibodies that recognizes the viral membrane proximal side of the NTD and SD2 domain, leading to cross-neutralization of Beta, Gamma and Omicron. We conclude SARS-CoV-2 infection and/or Wuhan-Hu-1 mRNA vaccination produces a diverse collection of memory B cells that produce anti-NTD antibodies some of which can neutralize variants of concern. Rapid recruitment of these cells into the antibody secreting plasma cell compartment upon re-infection likely contributes to the relatively benign course of subsequent infections with SARS-CoV-2 variants including omicron.

3.
Nature ; 600(7889): 517-522, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619745

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B cell responses that continue to evolve for at least a year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in variants of concern1. As a result, vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested1,2. Here we examine memory B cell evolution five months after vaccination with either Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccine in a cohort of SARS-CoV-2-naive individuals. Between prime and boost, memory B cells produce antibodies that evolve increased neutralizing activity, but there is no further increase in potency or breadth thereafter. Instead, memory B cells that emerge five months after vaccination of naive individuals express antibodies that are similar to those that dominate the initial response. While individual memory antibodies selected over time by natural infection have greater potency and breadth than antibodies elicited by vaccination, the overall neutralizing potency of plasma is greater following vaccination. These results suggest that boosting vaccinated individuals with currently available mRNA vaccines will increase plasma neutralizing activity but may not produce antibodies with equivalent breadth to those obtained by vaccinating convalescent individuals.


Assuntos
Vacinas contra COVID-19/imunologia , Evolução Molecular , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Idoso , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Vacina BNT162/imunologia , Estudos de Coortes , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Masculino , Células B de Memória/imunologia , Pessoa de Meia-Idade , Testes de Neutralização , Domínios Proteicos/imunologia , Glicoproteína da Espícula de Coronavírus/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...